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Abstract

As early as the 1920’s the future was imagined to be an exciting and marvelous
time seeing the realization of man’s imagination, from driving flying cars to working
with humanoid robots. It is obvious that after all this time we are still not there,
but we are getting there sooner than we imagine. Speaking of humanoid robots,
research and advancements in technology in the last decade has resulted in rapid
improvements in their effectiveness and reliability.

The problem with humanoid robots is that balancing is an exceedingly complex task,
and robust controllers are needed for balancing during locomotion and unexpected
disturbances. This thesis explores the utilization of the invariance controller in
achieving the balance of a humanoid legged robot. This controller is based on the
idea of the manipulation of the Zero Moment Point (ZMP) which is a measure
of the robot’s postural stability. The idea is to prevent the ZMP from violating
certain constraints which guarantee the robot stays balanced. Invariance control
sees the appropriate switching between a nominal controller, which is responsible for
achieving the robot’s nominal task (such as reaching for an object), and a corrective
controller, which is responsible for preventing the violation of the ZMP constrains
required to maintain balance.

This thesis explores how invariance control could be used to achieve postural stability
for a legged robot without having to assume the robot to be planar as has been done
before. Strategies are presented which overcome problems associated with the robot
being not limited to be planar. These strategies are first demonstrated on a simple
two degree of freedom inverted pendulum then finally on a more complex 7 DOF
robot with more degrees of freedom.
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Chapter 1

Introduction

The research and effort that has been put into the field of humanoid robotics during
the last two decades has been outstanding and the field has been advancing ever so
significantly. It guarantees that humanoids will no longer be only for entertainment
in Sci-Fi movies but will be involved in our everyday life in ways we thought not
possible decades ago. An optimistic future sees humanoids taking over hazardous
jobs like disaster response, damaged nuclear facility clean ups and space exploration;
and in the medical field offering disabled people a chance to regain lost mobility and
replace traditional prosthesis; or even being used for entertainment purposes such
as toy robots like never seen before. A good example of this today being Boston
Dynamics' Atlas robot which stands in the front line of cutting edge robotics showing
a fantastic ability to balance, jog through the woods or even do back flips [atl].

Figure 1.1: Boston Dynamics’ Atlas Robot [atl].

The ability to balance on legs; although very simple for us to do by the time we’re
12 months old, is a difficult task for a legged robot. This difficulty arises because
the dynamics involved with the walking of humanoid robots are non-linear, high
dimensional and hybrid [PCDG06]. So in order to give a legged robot the ability to
balance on its own, it requires an efficient and robust controller design.
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One such controller that is both robust and based on simple ideas is the Invariance
Controller. The invariance control is based on the simple idea of switching between
two different controllers: the nominal controller and the corrective controller. The
nominal controller being the one responsible for the fulfillment of the robot’s nominal
(main) task, which could be anything from walking to reaching for an object to hold.
The corrective controller is responsible for keeping certain constraints from violation
when needed. These constraints which are related to the so called Zero Moment
Point need to be kept from violation as their violation implies that the robot will
start to loose it’s balance.

In this chapter we first explain the concept of a Zero Moment Point, or a ZMP for
short. Then we explain the conditions that the ZMP must satisfy for our bipedal
robot to remain balanced. Then related work which is also based on the idea of
ZMP manipulation (as the invariance controller) is discussed before we demonstrate
how a simple 3D robot can be modelled for the implementation of our invariance
controller and for simulation later on.

1.1 Zero moment point

The concept of the Zero Moment Point was introduced by Vukobratović [VBv01] as
a point on the ground with respect to which the sum of the moments of the dynamic
reaction forces at the robot’s feet and ground contact area has zero components in
the horizontal direction. It is therefore also the point on the ground where the
resultant contact force has to act to balance the robot.

Figure 1.2: The ZMP Concept.

The concept of a ZMP relies on two major assumptions. First, that the contact area
between the robot’s feet and the ground is planar, and second, that the ground has
sufficiently high friction to keep the feet from sliding.
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In Fig. 1.2 one leg of a typical legged robot is shown. As seen, it consists of the foot
which is linked to the rest of the robot through rigid links connected by revolute
joints (not visualized here). Let the robot be formed of (N + 1) links (links are
numbered from 0 to N) with each ith link having mass mi and position of center
of mass r i = (xi, yi, zi)

T. The robot is assumed to have flat feet which are flat
on a flat ground. The frame of reference is chosen to be inertial and having its
x and y axes parallel to the ground. The ZMP is then located somewhere on the
ground with position specified by r zmp = (rzmp,x, rzmp,y, rzmp,z)

T, here rzmp,z has a
constant value to put the ZMP on the ground’s surface and is irrelevant. For such a
robot the coordinates of the ZMP are derived by K. Erbatur et al. [EOO+02] using
D’Alambert’s Principle [BJ90] yielding the following:

rzmp,x =

N∑
i=0

mi(z̈i − gz)xi −
N∑
i=0

mi(ẍi − gx)zi
N∑
i=0

mi(z̈i − gz)
(1.1)

rzmp,y =

N∑
i=0

mi(z̈i − gz)yi −
N∑
i=0

mi(ÿi − gy)zi
N∑
i=0

mi(z̈i − gz)
(1.2)

Here gx, gy and gz are the components of gravity resolved to the x, y and z directions
respectively of our chosen reference frame. In the case that the ground is horizontal
gx and gy are both zero and gz is simply −g for a z-axis pointing upwards; and in the
case that the ground is inclined the values of gx, gy and gz are obtained by resolving
g in the x, y and z directions respectively.

Here it is assumed that the joint angles have small velocities and accelerations; and
that the robot’s links have small enough rotational inertia. This enables us to treat
links as point masses at the link’s center of mass, this in turn greatly simplifies the
expressions for the ZMP’s coordinates as well as the robot’s equations of motion.
This assumption helps reduce the complexity associated with having a robot with
several degrees of freedom and helps reduce simulation times.
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1.2 Balancing conditions

As mentioned in the previous section, the ZMP is the point on the ground where
the resultant contact force has to act to balance the robot. So as long as the contact
forces between the robot’s feet and the ground have a distribution that places their
resultant at the ZMP’s location the robot stays balanced. This is possible only if
the ZMP remains inside the area formed by the convex hull of the contact points
between the robot’s feet and the ground [con], because the resultant force can only
act inside this area. In the case of contact with a single foot, this area is simply the
contact area between the robot’s foot and the ground as shown in Fig. 1.3(a); and
for the case of contact with two feet Fig. 1.3(b) shows the area the ZMP is allowed
to remain in for the robot to stay balanced. Let us call this area the safe area.

(a) Ground contact with one foot. (b) Ground contact with two feet.

Figure 1.3: Safe areas for different contact situations

As soon as the ZMP drifts outside the safe area, the robot will start to tip over
the edges of its feet and fall in the direction of the ZMP’s exit, and here lies our
main problem. The ZMP’s location depends on the positions and the accelerations
of the links as seen in (1.1) and (1.2), which in turn depend on the input torques
provided by the robot’s actuators. The torques provided by the robot’s actuators
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are determined by the nominal controller which is not concerned at all with the
ZMP’s location but with some nominal task such as having the joint angles follow
a certain trajectory. So it is not unlikely that at some point our nominal controller
results in actuator torques which cause the ZMP to exit the safe area. Therefore,
any controller which successfully keeps the robot balanced should either directly or
indirectly be manipulating the ZMP to stay in the safe area.

1.3 Related Work

As was discussed in Sec. 1.2, the Zero Moment Point which was introduced in Sec. 1.1
has constraints which must be satisfied for the robot to remain balanced and avoid
tipping over the foot edges and start falling. To maintain balance control we require
a balance controller which has influence over the ZMP’s dynamics so as to limit
where the ZMP can be and avoid it exiting the safe area. Such a controller which
has influence over the ZMP is said to be one based on ZMP manipulation. Several
approaches to achieve balance control are based on ZMP manipulation.

The ZMP was first introduced by Vukobratović [VBv01] as an indicator of the robot’s
mechanism behaviour as well as a measure of the robustness of the robot’s dynamic
equilibrium. Experimental studies exist such as in [HNI01] where dynamic patterns
are generated so as to satisfy ZMP constraints. This is achieved by the modulation of
the ankle’s joint trajectory based on sensory reflexes. This modulation is a function
of the difference between the actual ZMP trajectory obtained using sensory data and
the desired ZMP trajectory. This method proved experimental success; however, a
difficulty in simulation arises due to the existence of an algebraic loop due to the
dependency of the ZMP on the input torque existing along with a dependency of
the input torque on the ZMP. It is pointed out by [SWB07] that the accounting of
actuator dynamics as well as link flexibilities would negate this ZMP’s dependence
on the input torque.

In [KH03] a ZMP-plane which changes with respect to time is used which includes
all the allowable accelerations that imply dynamics that guarantee that the ZMP is
kept at a certain value. First, the desired acceleration is evaluated. If this desired
acceleration implies the violation of the ZMP constraints then it is projected onto
the ZMP-plane so as to fix the ZMP at its admissible boundary.

In [SWB07] the invariance controller is used for ZMP manipulation so as to achieve
balance control for legged robots. Due to the work being based on planar legged
robots, the ZMP’s position only had to be manipulated so to restrict it’s position to
be on a line between two points representing the two extremes of the robot’s foot,
making it a safe line rather than a safe area.
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The bounds of stability for the invariance controller which was introduced in [SWB07]
are explored in [EB16] to determine the region in state space where balance control
is still possible. This is to be able to determine when balance control by invariance
control is successful and to be used, otherwise stepping control could be used which
requires the robot to change the foot and ground contact points by stepping.

Lacking from [SWB07] and [EB16] was the implementation of invariance control for
3D legged robots, which is essential for the possibility of experimental testing of
invariance control in future work. This thesis explores the techniques and methods
used for applying invariance control for a 3D legged robot in a single support phase.
A simple algorithm is presented which can handle the motion of the ZMP in two
dimensions instead of only one, the algorithm is responsible for constraining the
ZMP in a safe area bounded by a polygon with a non-trivial shape.

This thesis is organized as follows. The next section explains the techniques used
to model a legged robot in 3D. Chapter 2 shows how the nominal and corrective
controllers which are the underlying controllers of the invariance controller are for-
mulated. Chapter 3 shows how the nominal and corrective controllers are combined
so as to form the invariance controller. Then finally in Chap. 4 the application
of the invariance controller is demonstrated for a 2 DOF and a 7 DOF robot to
demonstrate their effectiveness.
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1.4 Robot Modelling

The typical legged robot is consisted of a number of rigid links connected by revolute
joints. Each of these revolute joints will have a joint angle q which contributes to
the overall robot form. For a robot with flat feet which are flat on a flat ground like
in Fig. 1.4(a) the positions of all the links are functions of the joint angles and only
the joint angles. In this case we have joint angles from q1 till q6, so we can formulate
a mathematical model of the robot which is fully described by q = (q1, · · · , q6)T and
its time derivatives.

(a) A simple 6 DOF biped robot [rob]. (b) Simplified model of the 6 DOF robot.

Figure 1.4: Example of a 6 DOF robot and its mathematical model

We can generalize this for the typical legged robot with n joints which has flat feet
on a flat ground (or one flat foot flat on the flat ground) and have a mathematical
model formed by a set of minimal coordinates chosen to be the joint angles:

q =


q1
q2
...
qn

 ∈ Rn

If the ith joint is actuated by a torque τi we can let the vector τ = (τ1, · · · , τn)T

represent all of our actuator torques. These two vectors τ and q are part of the
robot’s equations of motion expressed in the general form:

M (q)q̈ + n(q , q̇) = τ (1.3)

Here M (q) is the inertia matrix which represents the inertias of the robot’s links
and depends on the robot’s configuration, and n(q , q̇) represents the gravitational,
Coriolis and centrifugal forces and torques. The determination of M (q) and n(q , q̇)
can be done using Lagrangian formulation as discussed in Sec. 1.4.2, but first we
need to determine the positions of the links centers of mass as functions of q as will
be done in the next section.
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1.4.1 Transformations Matrices

Imagine having a point P in space and two different reference frames O1 − x1y1z1
and O2 − x2y2z2 as shown in Fig. 1.5. The position of P can be described by the
vector p1 relative to the first frame and by p2 relative to the second frame. Although
both p1 and p2 describe the same point in space p1 6= p2 because both of them are
defined relative to different reference frames. However, we can obtain p1 from p2

(or the other way round) using transformation matrices.

Figure 1.5: A point P in space viewed from different frames.

First, if we take a look at Fig. 1.5 we can see that the second frame is related to
the first frame by geometric transformations (translations and rotations); if we first
translate the first frame such that its origin is the same as the second frame’s origin,
then rotate this new frame about its x-axis by some angle θx, then do the same with
the new y-axis with angle θy and then do the same with the new z-axis with an
angle θz we can get a frame that coincides with the second frame.
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The transformations we used to transform the first frame to the second frame can
be represented by 4× 4 matrices as follows:

Rx(θ) =


1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1

 Ry(θ) =


cos θ 0 sin θ 0

0 1 0 0
− sin θ 0 cos θ 0

0 0 0 1



Rz(θ) =


cos θ − sin θ 0 0
sin θ cos θ 0 0

0 0 1 0
0 0 0 1

 Trans(δx, δy, δz) =


1 0 0 δx
0 1 0 δy
0 0 1 δz
0 0 0 1


Now we can represent the transformation from the first frame to the second frame
with a matrix A1

2 defined by:

A1
2 = Trans(δx, δy, δz)Rx(θx)Ry(θy)Rz(θz)

with the appropriate values of δx, δy, δz, θx, θy and θz. So now we can obtain p1

from p2 using: (
p1

1

)
= A1

2

(
p2

1

)
Now using this concept of transformation matrices it is now desired to find the center
of mass positions for the (N + 1) links of our robot as functions of q . To do this we
apply the same concept as from the previous example, the only difference is that in
this case the transformation matrices will be functions of q . It will be assumed the
robot is in a single support phase (standing on one foot) and that this one foot is
flat on a flat ground; this will be the assumed throughout this thesis.

First a base frame must be defined, the only requirement is that it must be inertial,
for instance we can attach it to the supporting foot’s center of mass. Then using the
Denavit-Hartenberg Convention 1 we define a coordinate frame attached to each
link, from link 0 to link N [SSVO10]. Then for each ith joint we calculate the DH
parameters that are associated with the transformation from link (i− 1)’s frame to
link i’s frame, so that for each ith joint we have values for ai, di, αi and θi (For
revolute joints θi will depend on the joint angle qi). These values are then plugged
into the DH matrix:

Ai−1
i (qi) = DH(ai, αi, di, θi) =


cos θi − sin θi cosαi sin θi sinαi ai cos θi
sin θi cos θi cosαi − cos θi sinαi ai sin θi

0 sinαi cosαi di
0 0 0 1


1The Denavit-Hartenberg Convention is an easy but long topic and won’t be discussed here.
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Here Ai−1
i (qi) is a transformation matrix associated with the ith joint which connects

link (i− 1) to link i as seen in Fig.1.6.

Figure 1.6: Link (i− 1) joined to link i by jonit i.

Now if want the transformation matrix T 0
j(q), which transforms from link 0’s frame

to link j’s frame, we can obtain it simply by:

T 0
j(q) = A0

1(q1)A
1
2(q2) · · ·A

j−1
j (qj)

It is also possible that some link (i− 1) connects to two other links i’ and i” by two
different joints with joint angles qi’ and qi” respectively, an example of this branching
of joints is shown in Fig. 1.7.

Figure 1.7: Example of joints branching.



1.4. ROBOT MODELLING 15

The concept here is still the same but instead of having Ai−1
i (qi) as before we now

would have Ai−1
i’

(qi’) and Ai−1
i”

(qi”), and based on which path is taken along the
chain of links to reach the link of interest j’ (or j”) we can have:

T 0
j’(q) = A0

1(q1)A
1
2(q2) · · ·Ai−1

i’
(qi’) · · ·Aj’−1

j’
(qj’)

or,

T 0
j”(q) = A0

1(q1)A
1
2(q2) · · ·Ai−1

i”
(qi”) · · ·Aj”−1

j”
(qj”)

Note here that qi’ , qi” , qj’ and qj” are elements from the vector q .

We then define the transformation matrix T b
0 (typically constant) to be one which

transforms from our base frame to link 0’s frame. It can be obtained using the
transformation matrices for translation and rotation. Now we can calculate trans-
formation T b

j that transforms from the base frame to link j’s frame:

T b
j(q) = T b

0T
0
j(q)

Links j’s frame; however, does not necessarily coincide with link j’s center of mass.
So we need to define one more transformation matrix T j

CoMj
which transforms from

link j’s frame (which was chosen according to the DH convention) to any (chosen)
frame which has it’s origin coinciding the link j’s center of mass, this transformation
is typically constant and is obtained similarly as T b

0. So now we can obtain the
transformation matrix T b

CoMj
(q) which transforms from the base frame to link j’s

center of mass using:

T b
CoMj

(q) = T b
0T

0
j(q)T j

CoMj

Note that for link 0, T b
CoM0

is typically constant and found from:

T b
CoM0

= T b
0T

0
CoM0

The position vector pj = (xj, yj, zj)
T for link j’s center of mass relative to the base

frame is simply the origin of link j’s center of mass frame viewed relative to the base
frame so: 

xj
yj
zj
1

 = T b
CoMj

(q)


0
0
0
1


and so to obtain pj directly:

pj =

1 0 0 0
0 1 0 0
0 0 1 0

T b
CoMj

(q)


0
0
0
1


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The velocity v j and acceleration a j of the center of mass of link j can be found by
differentiating pj and v j respectively with respect to time:

v j =
dpj
dt

= (ẋj, ẏj, żj)
T

a j =
dv j
dt

= (ẍj, ÿj, z̈j)
T

1.4.2 Lagrange formulation

Lagrange formulation enables us to derive the equations of motion of a system sys-
tematically and independently from a reference frame [SSVO10]. This makes the
derivation of the equations of motion a lot easier than calculating the resultant force
and torque for each member of the system and then using Newton’s second law of
motion (which is good enough for simpler systems). First we have to define a set
of variables known as generalized coordinates that completely define the configura-
tion of our system, in this case it is the vector q = (q1, · · · , qn)T which effectively
describes the locations of all the links of our n-DOF robot as shown in the previous
section, which is assumed to be in a single support phase with one flat foot flat on
the ground.

First, we define the Lagrangian of our system as a function of the generalized coor-
dinates:

L = T − U

Here T denotes the total kinetic energy of the system and U the total potential
energy of the system. These quantities can be determined from the summations of
the kinetic energy and potential energy for links 0 to N :

T =
N∑
i=0

1

2
mi‖v i‖2 =

N∑
i=0

1

2
mi(ẋ

2
j + ẏ2j + ż2j )

U =
N∑
i=0

−mi(g · p i) =
N∑
i=0

−mi(gxxi + gyyi + gzzi)

Here mi is the ith link’s mass, p i and v i are respectively the position and velocity
of its center of mass. The vector g = (gx, gy, gz)

T is the gravity vector. Here p i, v i
and g are all resolved and relative to the chosen (inertial) base frame.
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Now assuming the joints with joint angles q = (q1, · · · , qn)T are actuated by the
torques τ = (τ1, · · · , τn)T and there are no dissipating forces throughout our system
(such as friction at the joints), the Lagrange equations are expressed as:

d

dt

∂L
∂q̇1
− ∂L
∂q1

...
d

dt

∂L
∂q̇n
− ∂L
∂qn

 = τ

This can be expressed in the compact form:

d

dt

(
∂L
∂q̇

)T

−
(
∂L
∂q

)T

= τ (1.4)

These equations establish the relations existing between q , q̇ and q̈ (the joint angle
positions, velocities and accelerations); and the torques applied at the joints. Hence
they allow us to derive the dynamic model of our system and their rearrangement
gives us (1.3), so then the expressions of M (q) and n(q , q̇) can be obtained as
required.
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Chapter 2

Nominal and Corrective
Controllers

Any functional robot is designed so that it performs one or more nominal (main)
tasks. A biped robot for instance can have nominal tasks such as walking, reaching
for an object to grab or even standing on one leg to display the ability to balance.
The controller responsible for outputting the correct torques from the robot’s actua-
tors to see the performance of these nominal tasks is termed the nominal controller.
In this thesis a corrective controller is one which has the sole task of outputting
the correct torques from the robot’s actuators that result in link positions and ac-
celerations which result in the ZMP to be restricted at certain point or to move
on a certain line. This chapter will first demonstrate how a simple nominal con-
troller can be derived and then how different corrective controllers for different ZMP
constraining situations can be derived.

2.1 Control System

To define our control system, we first choose a convenient state vector. From (1.3)
a good choice would be:

x =

(
q
q̇

)
∈ R2n

with n being the number of joints. Taking τ to be our control input u , our system
is therefore:

ẋ =

(
q̇
q̈

)
=

(
q̇

M −1(x )[u − n(x )]

)
=

(
q̇

−M −1(x )n(x )

)
+

(
0

M −1(x )

)
u

which can be expressed in the form:

ẋ = f (x ) + g(x )u (2.1)
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A system such as this is termed a nonlinear control-affine system, meaning that it
is linear with respect to the input and non-linear with respect to the state.

2.2 Nominal Controller

Although several possibilities for nominal controllers exist for a legged robot, we will
choose a simple one to be used throughout this thesis for demonstration purposes.
Such a simple nominal controller can be one responsible for having the joints track
desired joint angles in the form:

qdes,i = Ai sin(ωit) + ci

which is simply having each ith joint angle oscillate around some angle ci with
angular frequency ωi and amplitude Ai. At first thought, it may be suggested to
use a simple PD controller as shown:

u = τ = KD(q̇des − q̇) + K P (qdes − q)

with K P and KD being the parameters of our PD controller and defined as the
following diagonal matrices:

K P =


KP,1 0 . . . 0

0 KP,2 . . . 0
...

...
. . .

...
0 0 . . . KP,n

 KD =


KD,1 0 . . . 0

0 KD,2 . . . 0
...

...
. . .

...
0 0 . . . KD,n


The problem with this; however, is that this PD controller is a linear controller and
our system is a non-linear one as shown in (2.1). A linear system would be one
where (2.1) would be in the form ẋ = Ax + Bu instead. The use of this linear
PD control law on our nonlinear system can give a bad response where the tracking
error is not guaranteed to converge to zero and when it does it is a relatively slow
convergence [SK08]. To get over this we use a computed-torque controller which is
based on the feedback linearization principle [Kha02]. This principle allows us to
map a nonlinear model such as ours to an equivalent linear one, consequently we
would be able to use a linear controller such as a this PD controller. We begin first
by rewriting (1.3) as:

q̈ = M −1(q)[τ − n(q , q̇)] (2.2)

If we can somehow cancel the non-linear terms M (q) and n(q , q̇), then our system
is effectively converted to a linear one. Using our prior knowledge of the expressions
for M (q) and n(q , q̇), we can smartly choose τ to be:

τ = M (q)[u ] + n(q , q̇) (2.3)
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where u is an auxiliary (helping) control signal now and not the same as τ . If we
substitute (2.3) into (2.2) we get:

q̈ = M −1(q)[M (q)[u ] + n(q , q̇)− n(q , q̇)] (2.4)

so we have the equivalent linear system:

q̈ = u (2.5)

Our system now can be expressed as:

ẋ =

(
q̇
q̈

)
=

(
0 1
0 0

)
x +

(
0
1

)
u

which is in effect a linear system and can be controlled effectively using our PD
controller. We see from (2.5) that when in steady state where the tacking error
e = (qdes − q) and all of its derivatives are approximately zero, so we should have
q̈ = u ≈ q̈des. Therefore we choose u to be:

u = q̈des + KD(q̇des − q̇) + K P (qdes − q)

instead of only

u = KD(q̇des − q̇) + K P (qdes − q)

and now to obtain τ all we have to do is to substitute u in to (2.3).

2.3 Corrective Controller

The corrective controller is responsible for outputting the correct torques from the
robot’s actuators that result in link positions and accelerations which result in the
ZMP to be restricted at certain point or to move on a certain line. In this section
we will show how we can formulate the corrective controller that can restrict the
ZMP to move on a certain line, as well as the corrective controller that can restrict
the ZMP at a certain point. In the next chapter it will be shown how the corrective
controllers along with the nominal controller discussed in Sec. 2.2 can be combined
to form the invariance controller for controlling our robot.
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2.3.1 ZMP Equations

It was shown in (1.1) and (1.2) that the coordinates of the ZMP are functions of
the positions and accelerations of the links’ centers of mass and in Sec. 1.4.1 its was
shown how these positions and accelerations could be found using transformation
matrices. The position of the ith link’s center of mass is a function of q :

p i(q) =

xj(q)
yj(q)
zj(q)


and its acceleration is a function of q , q̇ and q̈ :

a i(q , q̇ , q̈) =

ẍj(q , q̇ , q̈)
ÿj(q , q̇ , q̈)
z̈j(q , q̇ , q̈)


and because we’re using computed torque control and q̈ is related to u by (2.5) we
can restate the previous statement as:

a i(q , q̇ ,u) =

ẍj(q , q̇ ,u)
ÿj(q , q̇ ,u)
z̈j(q , q̇ ,u)


and so assuming our base frame was chosen to have its x and y axes parallel to
the ground, and knowing the fact that the ZMP lies somewhere on the surface of
the ground, we could define the 2D position vector representing the ZMP’s location
relative to the base frame’s x and y directions (the z coordinate is irrelevant) as
functions of q , q̇ and q̈ :

r zmp(q , q̇ ,u) =

(
rzmp,x(q , q̇ ,u)
rzmp,y(q , q̇ ,u)

)
This expression can be found by substituting the expressions for the positions and
the accelerations of the links’ centers of mass from Sec. 1.4.1 into (1.1) and (1.2).



2.3. CORRECTIVE CONTROLLER 23

2.3.2 Line Constraining

Assume that we would like to restrict the ZMP’s motion such that it can only move
on a line li on the xy-plane of our base frame projected on to the ground described
by the two parameters αi and d0,i as shown in

Figure 2.1: A general line li described by the parameters αi and d0,i.

Here d0,i is the length of the shortest line joining between our origin and the line li;
and αi is the angle this shortest line makes with the positive x-axis. We then define
the vector r zmpα to be the position vector of the ZMP but viewed from a reference
frame rotated by α about the positive z-axis from our base frame as shown in
Fig. 2.2.

Figure 2.2: The ZMP viewed relative to the xαyα axes.
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We can obtain r zmpα by observing the equivalence between it and simply rotating
the ZMP (visually) by −α about the z-axis and viewing it from the base frame, so
we have:

r zmpα(q , q̇ ,u) =

(
cos(−α) − sin(−α)
sin(−α) cos(−α)

)
r zmp(q , q̇ ,u) =

(
rzmpα,x(q , q̇ ,u)
rzmpα,y(q , q̇ ,u)

)
Now our problem of wanting to constrain the motion of the ZMP to be on the line
li is simply requiring:

rzmpαi ,x
(q , q̇ ,u) = d0,i (2.6)

we only need to solve (2.6) for the control signal u required. Fortunately, this
equation is linear in u and can be rewritten as:

Au = b

or more detailed:

(
a1 · · · an

)u1...
un

 =
(
b
)

The problem here is that unless n = 1, this is an undetermined system and no
unique solution exists. However, if we specify that we want our solution u to be one
having minimal l2-norm ‖u‖2 =

√
u21 + · · ·+ u2n, we can use the pseudo inverse of

A to find the a unique solution [SWB07]:

ucor = A+b

For reasons that will become more apparent later on, we may want a solution for ucor

that is as close as possible to the nominal controller signal unom, so we want to have a
solution with minimal l2-norm ‖u−unom‖2 =

√
(u1 − unom1)

2 + · · ·+ (un − unomn)2,
this solution can be obtained using [SWB07]:

ucor = A+b + (I −A+A)unom

where I is the identity matrix. We can even go one step further and define a diagonal
weights matrix W which based on its ith element along the diagonal wi,i compared
with all the other diagonal elements determines how much the ith joint should be
participating constraining the ZMP. This requires a solution which has a minimal
l2-norm ‖W −1(u − unom)‖2. This solution can be obtained from [SWB07]:

ucor = W (AW )+b + (I −W (AW )+A)unom

For later referencing, a corrective control signal for a line defined by α and d0 will
be denoted by ucor,line,α,d0 .
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2.3.3 Point Constraining

It may be desired to constrain our ZMP to a point defined by the coordinates xc
and yc on the xy-plane of our base frame projected on to the ground. Obtaining the
corrective control signal for this requires the solution of the following:

r zmp(q , q̇ ,u) =

(
rzmp,x(q , q̇ ,u)
rzmp,y(q , q̇ ,u)

)
=

(
xc
yc

)
and as was the case with line constraining, these equations are also linear in u and
can be rewritten as:

Au = b

but when written with more detail:

(
a11 · · · a1n
a21 · · · a2n

)u1...
un

 =

(
b1
b2

)
Here similar to line constraining a unique solution will only exist for n = 2, for
cases where n > 2 we use the same techniques used to to obtain a unique solution
by requiring the solution to have minimal l2-norm ‖u‖2 or ‖u − unom‖2 or even
‖W −1(u − unom)‖2 as required.

For later referencing the a corrective control signal for a point defined by xc and yc
will be denoted by ucor,point,xc,yc .

In this chapter it was demonstrated how we can formulate a simple nominal con-
troller as well as two different corrective controllers, one of which designed to restrict
the ZMP to move on a certain line defined by the parameters αi and d0,i, the other
designed to restrict the ZMP at a certain point with coordinates xc and yc. In the
next chapter, it will be shown how invariance control combines the nominal con-
troller and the two corrective controllers to achieve balance control for the legged
robot.
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Chapter 3

Invariance Controller

In controlling our legged robot using solely the nominal controller we risk an im-
portant condition required for the robot to remain balanced being violated, that
condition is the remaining of the ZMP inside the safe area. Invariance control solves
this by appropriate switching between using the nominal controller and corrective
controllers which are responsible for constraining the motion or the position of the
ZMP. Chapter 2 showed how we can formulate a simple nominal controller designed
to track sinusoidal joint angle trajectories, and two different corrective controllers
each designed for a different constraint of the ZMP’s motion, being constraining
the ZMP’s motion (or position) to be on a line or on a point. In this chapter we
demonstrate how we can formulate an invariance controller for a safe area bounded
by a polygon with a nontrivial shape.

Assume we have a safe area bounded by a convex polygon formed of N line segments
as shown in Fig. 3.1. Where each of the lines from l1 to lN is described by the
parameters α and d0, such that the ith line is described by αi and d0,i.

Figure 3.1: Example of a safe area bounded by a polygon.
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For each ith line we define a variable hi as follows:

hi = rzmpαi ,x
− d0,i

Figure 3.2: Interpretation of the quantity hi.

The variable hi is a measure of the perpendicular distance between the ZMP and
the line li. The sign on hi determines which side of the line li our ZMP lies on; a
negative hi implies that the ZMP is on the safe side of li as shown in Fig. 3.2 and
a positive ZMP implies a position on the unsafe side of the line li and hence its
position outside the safe area. So if we want the ZMP to remain inside the safe area
then then hi < 0 for all 1 6 i 6 N . So for a ZMP inside the safe area we need:

max{h1, · · · , hN} < 0

We define hcur,i and hnom,i for 1 6 i 6 N :

hcur,i = rzmpαi ,x
(q , q̇ ,ucur)− d0,i

hnom,i = rzmpαi ,x
(q , q̇ ,unom)− d0,i

where ucur is the output of the current controller, nominal or corrective; and unom

is the output of the nominal controller. So hcur,i is the h-value for the ith line for the
ZMP location implied by the current controller and hnom,i is the h-value for the ith

line for the ZMP location implied by the nominal controller which may be fictive.



29

The idea that our invariance controller should be based upon is that if

max{hnom,1, · · · , hnom,N} < 0

then ucur = unom; otherwise, we would need to take some corrective action to hold
the ZMP at the boundary. One may initially suggest an simple algorithm as follows:

Data: {hnom,1, · · · , hnom,N} and {hcur,1, · · · , hcur,N}
Result: ucur

if max{hnom,1, · · · , hnom,N} < 0 then
ucur = unom;

else
I = maxi{hcur,1, · · · , hcur,N} ; // Index of the maximum element

ucur = ucor,line,αI ,d0,I

end
Algorithm 1: Basic control strategy for polygon boundary.

The problem with this; however, is that line corrective controllers restrict the ZMP’s
location on a line without constraint for where on the line. For example it may
happen that the nominal controller would suggest a ZMP position that would violate
line li, so according to the algorithm we would switch to the corrective controller
for line li. However, the corrective controller for line li suggests a ZMP location
that violates line li+1 so we switch to the corrective controller for line li+1, but
this controller violates li so we switch back and very rapid switching between the
corrective controllers for li and li+1 occurs, this is illustrated in Fig. 3.3. This leaves
the ZMP outside the boundary for the whole time that max{hnom,1, · · · , hnom,N} > 0,
needless to mention that this rapid switching implies rapid switching of actuator
torques which can cause damage to the actuators.

Figure 3.3: The problem associated with the basic control strategy.
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A simple and effective way to get around this is to use point corrective constraining
during this time to constrain the ZMP to the corner formed by the lines li and li+1.
The algorithm for this is as follows:

Data: {hnom,1, · · · , hnom,N} and {hcur,1, · · · , hcur,N}
Result: ucur

if max{hnom,1, · · · , hnom,N} < 0 then
ucur = unom;

else
I1 = maxi{hcur,1, · · · , hcur,N} ; // Index of the maximum element

ucur1 = ucor,line,αI1,d0,I1 ;

calculate {hcur1,1, · · · , hcur1,N} associated with ucur1;

if max{hcur1,1, · · · , hcur1,N} < 0 then
ucur = ucur1;

else
I2 = maxi{hcur1,1, · · · , hcur1,N} ;
ucur2 = ucor,line,αI2,d0,I2 ;

calculate {hcur2,1, · · · , hcur2,N} associated with ucur2;

if max{hcur2,1, · · · , hcur2,N} < 0 then
ucur = ucur2;

else
calculate the intersection point (xp, yp) of lI1 and lI2 ;
ucur = ucor,point,xp,yp ;

end

end

end
Algorithm 2: Improved control strategy for polygon boundary.

So it was shown how we could combine the nominal controller with the corrective
controllers to form our invariance controller for a safe area formed by a convex
nontrivial polygon boundary. This algorithm is simple and effective as will be shown
in the next chapter discussing simulation results.
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Chapter 4

Simulation Results

Chapter 3 showed us how we can formulate the invariance controller, intended to
constrain our ZMP inside a boundary shaped by a convex nontrivial polygon to
achieve balance for the legged robot. In this chapter we will demonstrate this con-
troller for a simple 2 DOF legged robot and then for a more complicated 7 DOF
legged robot. For the 2 DOF we demonstrate the difference between using the differ-
ent solution options for ucor as shown in Sec. 2.3 and then we discuss the limitations
of invariance controllers briefly. Then we apply the invariance controller for the 7
DOF robot which resembles an actual legged robot to show its effectiveness.
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Figure 4.1: Polygon to describe the robot’s foot base.

For both robot models the polygon in Fig. 4.1 will be used to describe the robot’s
foot base which is the same as the safe area because the robot is assumed to be
in single support. The black + sign is where the ankle is above by hankle from the
ground. Also, for the sake of simplicity any collision between a link and another
link or a link and the ground is ingnored.
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4.1 2 DOF Robot

The 2 DOF robot to be used is shown in Fig. 4.2. It consists of an inverted pendulum
with two revolute joints at its base perpendicular to each other; one in the x-direction
with a joint angle q1 and another in the y-direction with a joint angle q2.

Figure 4.2: Two degree of freedom inverted pendulum robot.

Although technically possible to do by hand, the generation of the equations of mo-
tion and the controllers was done using the MATLAB R© Symbolic Math Toolbox

TM

which provides a quick, correct and efficient method for such a task. This model
is then simulated using MATLAB R© along with Simscape

TM
within the Simulink R©

environment. This was done for both the 2 DOF model and the 7 DOF model. The
model parameters used can be found in Sec. A.2.
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4.1.1 Different Solution Options

As was shown in Sec. 2.3 it was possible to obtain three different solutions for
ucor, each being based on obtaining a solution which minimizes the l2-norm ‖u‖2
or ‖u − unom‖2 or even ‖W −1(u − unom)‖2 as required. In this section we explore
the results of each solution and hence show how minimizing ‖W −1(u − unom)‖2 is
the most suitable of the three. First we choose our nominal controller to track the
following joint angle trajectories:(

qdes,1(t)
qdes,2(t)

)
=

(
0.50 sin((2)(2π)t)◦

2.50 sin((1)(2π)t)◦

)
using the PD controller with computed-torque control as in Sec. 2.2. The PD con-
troller has the following parameters:

Parameter Value
K P 5I
KD 2.5I

Table 4.1: PD controller parameters used for simulation.

and starting from rest with initial joint angles:(
q1(0)
q2(0)

)
=

(
0◦

0◦

)
We use the invariance controller for the boundary shown in Fig. 4.1. We first simu-
late; however, without using the invariance controller and relying solely on the nom-
inal controller alone. Figure. 4.3 shows the ZMP’s motion visualized from roughly
t = 0.60s till from t = 1.00s. As shown, the ZMP at some point exits the safe area,
meaning that if we relied solely only on the nominal controller our robot will have
started to loose balance from t = 0.60s. So the use of the invariance is essential for
maintaining the balance of the robot.
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Figure 4.3: The ZMP violating the boundary without invariance control.
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Invariance Control Using the First Solution Option

Using invariance control with the first solution option of ucor which minimizes the
l2-norm ‖u‖2 we simulate for the chosen nominal controller. Figure 4.4 shows the
ZMP’s motion visualized from roughly t = 0.60s till from t = 1.00s.
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Figure 4.4: The ZMP being constrained at the boundary using the first solution
option for ucor.

As seen, the path taken by the ZMP is not continuous as it jumps due to the switch-
ing of our controller from first the nominal controller to the corrective controller of
the line which was about to be violated first then to the corrective controller of the
adjacent line and then to the nominal controller again. This jumping of the ZMP is
clearer in Fig. 4.5 where the ZMP changes position instantaneously at times.
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(a) rzmp,x vs. t.
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(b) rzmp,y vs. t.

Figure 4.5: The ZMP’s sudden changes of position are clear in the plots of its x and
y coordinates against time.

In theory this is not a problem since the ZMP remains constrained within the bound-
ary as required for the robot’s balance. The problem lies in practicality. As seen in
Fig. 4.6, these instantaneous changes in the ZMP’s position go back to instantaneous
changes in the robot’s actuator torques. In practical terms, there is always a limit to
how rapidly an actuator can change its torque. Even then, it is usually recommended
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by the actuator’s manufacturer to avoid such sudden changes in torque because they
can have a damaging effect on the actuator along with its control circuit.
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(a) τ1 vs. t.
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(b) τ2 vs. t.

Figure 4.6: Sudden changes in the actuator torques resulting from the first solution
option for ucor.

It is therefore not recommended to use the first solution option of ucor due to lack
of its practicality.

Invariance Control Using the Second Solution Option

Using the second solution option for ucor instead allows for a minimization of the
l2-norm ‖u − unom‖2. This makes ucor resemble unom as much as possible while
maintaining the required constraints, so on switching controllers there is no sudden
change of u . This corresponds to continuos actuator torques which corresponds to
a continuous path taken by the ZMP as shown in Fig. 4.7.
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Figure 4.7: The continuos ZMP path resulting from using the second solution option.

Shown in Fig. 4.8 are the ZMP’s coordinates plotted against time. As opposed to
Fig. 4.5, no sudden changes in the ZMP’s position are present. This corresponds
to continuous actuator torques as shown in Fig. 4.9 which can be easily and safely
fulfilled by the typical actuator.
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(a) rzmp,x vs. t.
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(b) rzmp,y vs. t.

Figure 4.8: No sudden changes in the ZMP’s x and y coordinates are present when
using the second solution option for ucor.
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(a) τ1 vs. t.
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(b) τ2 vs. t.

Figure 4.9: No sudden changes in the actuator torques are present when using the
second solution option for ucor.

So due to its practicality the second solution option is clearly better than the first
solution option. We can still; however, go one more step further than this.

Invariance Control Using the Third Solution Option

When performing the corrective action required to hold the ZMP at the boundary
it may be desired to have each joint participate in this corrective action to a certain
extent. For example we may have a legged robot balancing on one foot while holding
an object in its hands. If when balancing a corrective action has to be taken, we
would not want the finger joints to participate in the corrective action as this can
make them deviate enough from the nominal task (gripping the object) and cause
the object to fall. We may want the elbow joint to participate in the corrective
action, but not to a great extent as this can also cause the object to fall if deviant
enough from the nominal task. The hip joints could be chosen to participate fully
in the corrective action.
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This can be achieved by assigning each ith joint a weight wi,i, such that if wi,i has a
high value relative to the other joints’ weights then the ith joint will deviate more
from the nominal task to contribute towards the corrective action, and for a low
value of wi,i compared to the other joints’ weights then the ith joint will deviate
less from the nominal task. To achieve this we can use the third solution option for
ucor which minimizes the l2-norm ‖W −1(u − unom)‖2. Taking the same case from
Sec. 4.1.1 we can specify the weighing matrix W as:

W =

(
w1,1 0

0 w2,2

)
We can increase w2,2 relative to w1,1 and see the effect of this as shown in Fig. 4.11,
increasing the value of w2,2 relative to w1,1 decreases the contribution of τ1 towards
the corrective action as it makes it resemble the nominal controller torque τnom,1
more, and due to this τ2 will have to compensate for the reduction of τ1’s corrective
action and will have to deviate more from the nominal controller τnom,2 more to keep
the ZMP at the boundary.

Also as shown in Fig. 4.10 the path taken by the ZMP is continuous and the bound-
ary constraints are still satisfied while assigning different weights for the joints.
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Figure 4.10: A continuos ZMP path also resulting from using the third solution
option.

It is therefore clear that the third solution option is the most convenient of the three
as not only can it be fulfilled by typical actuator in terms of torque, it can also give
us the freedom of specifying how much each joint should contribute towards the
corrective action taken to constrain the ZMP at the boundary. So we can choose
an appropriate weights matrix W that results in a satisfactory corrective action as
required. The third solution option will be used for all of the upcoming simulations.
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(a) Plot of τ1 vs. t.
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(b) Plot of τ2 vs. t.

Figure 4.11: The different robot actuator torques for different values of w2,2. Note
that for equal values of w1,1 and w2,2 the result is the same as the second solution
option.
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4.1.2 Limitations of the Invariance Controller

Although the upgrade from a sole acting nominal controller to an invariance con-
troller does indeed increase the balancing capabilities of a legged robot, this increase
in fact limited. In this section we will demonstrate an example of how much invari-
ance control can increase the balance capabilities of a legged robot using the 2 DOF
robot from the previous sections. Assume the robot has the same PD computed-
torque controller with the parameters as in Tab. 4.1 and a joint weights matrix equal
to the identity matrix for simplicity. However, this time our target is to reach and
maintain an upright posture such that(

qdes,1(t)
qdes,2(t)

)
=

(
0◦

0◦

)
and start from rest at different starting positions defined by q(0). If we first try this
with the starting position

q(0) =

(
8.65◦

8.65◦

)
the robot does indeed reach the desired upright position after some settling time
like expected as shown in Fig. 4.12.
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(b) q2 vs. t.

(c) The final upright position reached by
the robot as required.

Figure 4.12: The joint angles settle at the desired position as required.
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This settling at the upright position even occurs in spite of the fact that at some
point the corrective controller had to be used to prevent the ZMP from exiting the
safe area as shown in Fig. 4.13.
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Figure 4.13: The settling at the upright position is achieved in spite of the fact that
at some point the corrective controller was used.

However, if we try the same but with a starting position

q(0) =

(
8.75◦

8.75◦

)
the robot collapses and reaches an unacceptable position as shown in Fig. 4.14

(a) Robot at t = 1.35s.

(b) Robot at t = 1.60s.

Figure 4.14: The robot collapses and doesn’t reach the upright position.
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and on examining the path taken by the ZMP we see that although an erratic path
is taken, at no point does the ZMP exit the safe area.
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Figure 4.15: Erratic path taken by the ZMP without exiting the safe area.

Why did the robot collapse then when the ZMP never exited the safe area? This
is because the remaining of the ZMP inside the safe area is not actually a complete
determinant of the robot staying in an upright position as we want for any legged
robot. Its remaining inside the safe area only guaranteed that the robot’s foot will
not rotate about one of its edges and cause the robot to topple over. However, al-
though the robot’s foot did not rotate about any of its edges, the corrective controller
did cause q1 to exceed 90◦ as shown in Fig. 4.16(a), and the robot did technically
fall down in the end. The corrective controller has one and only one task and that is
to constrain the ZMP on the boundary regardless of the consequent joint positions,
velocities and accelerations.
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(a) q1 vs. t.
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Figure 4.16: The joint angles for a failed case of invariance control.

The problem with the corrective controller as pointed out by [SWB07] is that the
necessary torques to keep the ZMP constrained at the boundary increase the distance
between the ZMP and the robot’s center of mass (unless the center of mass is at rest
above the ZMP), so persistent constraining of the ZMP at the boundary will always
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eventually lead to the robot falling down (without the foot ever rotating about one
of the edges). The success of invariance control relies on a brief utilization of the
corrective controller to hold the ZMP at the boundary to prevent the foot from
rotating about one of its edges, followed by a quick enough switch back to nominal
control mode. If this switch back to nominal controller mode happens quickly enough
then we get a successful case of invariance control as was shown in the first example
of this section, otherwise we get a failed case of invariance control as in the second
example. So it is clear that invariance control has limitations.

We could demonstrate such limitations by trying to do the same as in the first two
examples but with different starting positions of q1 and q2. We could regard that
a case is failed if at any time any of the joint angles exceed 90◦ in any direction.
This is shown in Fig. 4.17 where starting positions which lead to failure are marked
by a red cross, and those which require corrective action some point and do not fail
are marked with a green circle and others which do not fail and do not require any
corrective action are marked with a blue circle.

Figure 4.17: The simulation runs for different starting positions show the improve-
ment of the robot’s balancing capabilities brought by the invariance controller, but
this improvement is limited.

In Fig. 4.17 the blue area represents the starting positions that did not require
invariance control, so the robot could have stayed balanced using a sole acting
nominal controller. The red area represents the starting positions that failed using
the invariance controller and would have also failed with a sole acting nominal
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controller. It can be deduced then that the green area is a measure of the added
balance capability by the invariance controller to the robot, as without the invariance
controller the robot would have failed in this region too. The red area is where we
can rely on invariance control no more and be forced to use another strategy to avoid
loosing balance such as stepping control. It is worth mentioning that the reason for
the symmetry of the plot about the q2(0) axis and the asymmetry about the q1(0)
axis is due to the symmetry of the safe area boundary about the x-axis and its
asymmetry about the y-axis respectively.

Although it was pointed out that the corrective controller can cause the robot to
fail due to the consequent unbounded trajectories of the joint angles that will cause
the robot to hit the ground, there are other ways in which it can cause the robot to
fail. For a more realistic model we would have limitations for joint angle positions,
velocities and accelerations; and also links that should not collide with each other
and a ground that can not be penetrated (as was ignored in the simulation). It is
necessary to understand the limitations of the invariance controller well as only this
way can we be able to utilize it to its full potential without failure.
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4.2 7 DOF Robot

The 7 DOF robot to be used is shown in Fig. 4.18. It consists of a legged robot
which resembles a humanoid robot. The robot has the same foot base as that of
the 2 DOF robot used in the previous section. The model parameters used for this
robot can be found in Sec. A.3.

Figure 4.18: Seven degree of freedom legged robot.

Assume we want to assign this robot the nominal task of dancing while standing
on one foot. For this we choose to have the joints track the following joint angle
trajectories: 

qdes,1(t)
qdes,2(t)
qdes,3(t)
qdes,4(t)
qdes,5(t)
qdes,6(t)
qdes,7(t)


=



(2.5 sin((1)(2π)t) + 5)◦

(10 sin((1)(2π)t) + 20)◦

(−10 sin((1)(2π)t)− 20)◦

0◦

(−10 sin((1)(2π)t) + 20)◦

(20 sin((1)(2π)t)− 90)◦

(−20 sin((1)(2π)t)− 90)◦


with the initial joint angle positions and velocities:

q(0) =



5◦

20◦

−20◦

0◦

20◦

−90◦

−90◦


q̇(0) =



((2.5)(2π))◦/s
((10)(2π))◦/s

((−10)(2π))◦/s
0◦/s

((−10)(2π))◦/s
((20)(2π))◦/s

((−20)(2π))◦/s


The tracking will be done using a PD controller with computed-torque control having
parameters as in Tab. 4.1.
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Normally, this nominal task does not cause any ZMP boundary violations and results
in ZMP motion consisting of oscillation along the arc shown in Fig. 4.19.
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Figure 4.19: .

However, if the robot is exposed to external disturbances, this motion pattern of
the ZMP will change and is likely to exit the safe area and cause the robot to loose
balance without corrective action. In the next section we will demonstrate how the
invariance controller can help the robot recover from external disturbances.

4.2.1 Disturbance Rejection Demonstration

During the robot’s performance of the nominal task we expose it to two different
impulsive forces at two different times at the mid-torso as shown in Fig. 4.20, one
in the x direction with impulse Jx and the other in the y direction with impulse Jy.

Figure 4.20: The impulses exerted at the robot’s mid-torso.

The invariance controller is used with the third solution option for ucor with a
weights matrix W chosen to be the diagonal matrix:

W = diag(5, 1, 1, 5, 15, 10, 10)
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Successful Case

For this example we choose Jx to be 2.6Ns acting at t = 1s and Jy to be 2.3Ns acting
at t = 3s. Both of the impulses result in two occasions when the ZMP is about to
exit the safe area and gets constrained at the boundary by the corrective controller
as shown in Fig. 4.21

-0.05 0 0.05 0.1 0.15 0.2

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

(a) From t = 1.1s to t = 1.8s.
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(b) From t = 3.3s to t = 3.8s.

Figure 4.21: Two occasions where the ZMP is about to exit the safe area.

The success of the invariance controller in this example is confirmed by the disap-
pearance of the joint angle tracking errors after both hits as shown in Fig. 4.22.
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Figure 4.22: Disappearance of the joint agle tracking errors after both hits.
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Failed Case

If we choose instead to give the robot only one rather strong push characterized
by the impulse Jx with magnitude 3.0Ns acting at t = 1s we get a failed case
of invariance control as shown in Fig. 4.23 where the robot collapses and hits the
ground at t = 2.7s.

Figure 4.23: The robot collapses and hits the ground at t = 2.7s.

This is in spite of the fact that the ZMP never exits the safe area as shown in
Fig. 4.24.
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Figure 4.24: The robot hits the ground even though the ZMP never exits the safe
area.

As discussed in Sec. 4.1.2 the remaining of the ZMP inside the safe area is not
a complete determinant of the robot staying balanced, it is only one requirement.
The true determinant of the failure of invariance control in this case is the robot
configuration which has links colliding with the ground at t = 2.7s.
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The unbounded tracking errors that result after the hit as shown in Fig. 4.25 also
confirm that invariance control has failed in this case.
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Figure 4.25: Unbounded tracking errors that result after the hit at t = 1s.

So it was shown how in some cases invariance control can be successful and help
prevent the robot from loosing balance but in others it is not enough and the robot
falls anyway. With a good understanding of the limitations of invariance control we
can use stepping control in the cases where invariance control is to fail to effectively
prevent all cases of failure.
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Chapter 5

Conclusion

In this thesis we first introduced the Zero Moment Point as the point on the ground
where the ground reaction must act to balance a legged robot. A legged robot
will stay balanced only if the ZMP remains inside the convex hull of the contact
points between the robot’s feet and the ground, which we termed in this thesis the
safe area. Our main problem was that the nominal controller which is responsible
for the execution of the robot’s main task may cause the ZMP to exit the safe
area, and hence cause the robot to loose balance. Therefore we needed some ZMP
manipulative control law that would always restrict the ZMP inside the safe area to
keep the robot balanced.

An intuitive and simple idea to restrict the ZMP inside the safe area is to switch from
the nominal controller to a corrective controller whenever the nominal controller is
about to cause a violation of the ZMP’s constraint. The corrective controller’s task
is then to restrict the ZMP to move on the boundary of the safe area. As soon
as the nominal controller is about to result in a ZMP which does not violate the
constraint we switch back to it. We assumed to have a safe area boundary formed of
a convex polygon with any number of sides. Constraining the ZMP to move on such
a boundary requires at times to constrain it to move on the sides of the polygon
boundary and at times to constrain its position to one of the polygon’s corners. To
achieve this two different corrective controllers were formulated; the line constraining
corrective controller which constrains the ZMP to move on a line described by the
two parameters α and d0 and the point constraining corrective controller which
can constrain the ZMP’s position to a point with coordinates (xc, yc). Then using
a simple algorithm that switches between the nominal, line constraining corrective
and point constraining corrective controllers we are able to constrain the ZMP inside
the safe area as required, this switching strategy forms the invariance controller.

First, we simulated the use of the invariance controller for a 2 DOF robot to demon-
strate the differences between the three different solution options we had for each
of the corrective controllers where each solution was based minimizing the l2-norm
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‖u‖2 or ‖u − unom‖2 or even ‖W −1(u − unom)‖2 and in the same time resulting in
the required corrective action. It was then shown that the third solution was the
most convenient of the three as it offered practicality, resemblance to the nominal
controller as well as the freedom of choosing how much each of the robot’s joints
should participate in the corrective action. Then an example was shown to demon-
strate both how the invariance controller can add balance capability to the robot
but in the same time this added balance capability is limited because of the instabil-
ities that can occur due to the corrective controller. Then for a 7 degree of freedom
legged robot we showed how invariance control can help prevent a legged robot from
loosing balance due to unexpected pushes, but also how it can fail to do so if such
pushes are strong enough. All in all it was shown that invariance control is effective
and does indeed improve a robot’s balance capabilities.

The main limitation for this thesis’ work was the fact that the robot’s links were
modelled as point masses without rotational inertia as a way of simplifying simula-
tion. This of course is not applicable for large robots; and cases where the angular
velocities and accelerations are high such as running. Also, it was assumed that the
controller has direct control over the actuators torques which is not usually the case.
A more realistic model would be one where the controller has direct control over the
actuator input currents instead. Another assumption used was that there is zero
friction in the joints. Although usually negligible, frictional forces can sometimes
have influence over the robot’s performance.

It is recommended for future work to apply and simulate invariance control for a
robot with much more degrees of freedom such as the atlas robot. One can also
explore the influence of parameters such as K p, K d and W on the effectiveness of
the invariance controller and maybe find parameter values which give optimal added
balance capability. Developing an understanding of the limitations of invariance
control is recommended so it can be determined when invariacne control will fail
and another strategy to maintain balance should be used, because only this way can
we utilize invariance control to its maximum potential.
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Appendix A

Robot Parameters

For all simulations the gravity vector was chosen to be g = (0, 0,−9.80665)Tm/s2

A.1 Safe Area Boundary

The coordinates of the points which describe the boundary of the safe area shown
in Fig. 4.1:

x(m) -0.05 -0.025 0 0.05 0.1 0.15 0.175 0.197
y(m) 0.012 0.035 0.045 0.05 0.05 0.04 0.028 0

x(m) 0.175 0.15 0.1 0.05 0 -0.025 -0.05 -0.05
y(m) -0.028 -0.04 -0.05 -0.05 -0.045 -0.035 -0.012 0.012

Table A.1: Coordinates of the points which describe the safe area boundary.

The ith line is formed by joining the points (xi, yi) and (xi+1, yi+1). If this line has
equation y = mx+ c then we can find the parameters αi and d0,i using:

αi = tan−1(m) + π/2

d0,i = c cos(tan−1(m))



52 APPENDIX A. ROBOT PARAMETERS

A.2 2 DOF Robot

Figure A.1: The 2 DOF robot.

Parameter Value Unit
m0 1 Kg
m1 5 Kg
h1 0.4 m

hankle 0.025 m

Table A.2: Model parameters for the 2 DOF robot.
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A.3 7 DOF Robot

A.3.1 Inertial Parameters

Figure A.2: Inertial parameters.

Parameter Value Unit
m0 1 Kg
m1 1 Kg
m2 1 Kg
m3 1 Kg
m4 1 Kg
m5 1 Kg
m6 1 Kg
m7 1 Kg

Table A.3: Inertial parameters for the 7 DOF robot.
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A.3.2 Dimensional Parameters

Figure A.3: Dimensional parameters.

Parameter Value Unit
h1 0.4 m
h2 0.2 m
h3 0.4 m
h4 0.2 m
h5 0.3 m

hankle 0.025 m

Table A.4: Dimensional parameters for the 7 DOF robot.
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